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Spatial evolution of small perturbations introduced into an inlet cross-section of
fully developed turbulent flow in a long straight circular pipe is investigated via
direct numerical simulation (DNS). The turbulent inflow field is extracted from an
auxiliary streamwise-periodic simulation running in parallel with the main spatial
simulation. It is shown that mean perturbation amplitude ε increases exponentially
with distance downstream. The growth rate is found to be constant when normalized
by viscous length, ε ∼ exp(0.0021x+) over the considered Reynolds-number range
140 � Reτ � 320. The universal character of perturbation growth is confirmed by
channel-flow simulations.

1. Introduction
Consider a streamwise-homogeneous turbulent fluid flow in a long straight duct of,

say, a circular cross-section. The introduction of a small velocity perturbation into
a fixed cross-section causes flow modification downstream. The goal of the present
work is to estimate the rate of predictability of the instantaneous structure of the
turbulent flow by analysing the velocity difference between the flows with and without
perturbations.

Instability and unpredictability may be considered as essential parts of the definition
of turbulence. In contrast to the averaged characteristics which are fairly predictable,
the difference between the instantaneous velocity fields of two turbulent flows will
grow until saturated at the level comparable to the level of turbulent fluctuations
no matter how small it might be initially. Considerable theoretical and experimental
effort has been devoted to tackling the problem of turbulence predictability. The first
analytical and computational studies (Lorenz 1963; Smagorinsky 1969; Kraichnan
1970; Leith 1971; Leith & Kraichnan 1972; Lilly 1972; Orszag & Patterson 1972) dealt
with homogeneous isotropic turbulence in the context of meteorological applications.
In the cited papers, the underlying measure of unpredictability is the growth in
the difference between the Eulerian velocity fields of pairs of flows chosen from
statistically identical ensembles: δu(x, t) = u(1)(x, t) − u(2)(x, t). In order to investigate
the behaviour of δu when it is small, we must generalize the hydrodynamic stability
theory, which was very fruitful in the context of laminar to turbulent transition, to
circumstances where the unperturbed base flow is a complicated function of space and
time. An interesting application of the analysis of δu behaviour in direct numerical
simulations of a turbulent channel flow is given in the work of Keefe, Moin &
Kim (1992) where it was used to calculate the Lyapunov dimension of the turbulent
attractor.
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Studies in which the equations of motion were linearized about the turbulent mean
velocity field span a considerable period of time. As a result, it is now well established,
for example, that the dominant mechanism of turbulence production in free turbulent
shear flow is the inviscid inflectional instability of the turbulent mean-velocity profile
(Gaster, Kit & Wygnanski 1985). One of the latest approaches (Chernyshenko & Baig
2005; del Álamo & Jimenez 2006) based on non-modal growth of perturbations of the
mean velocity profile was shown to have a significant predictive ability for the organ-
ized structures in near-wall turbulent flow. However, only constant-in-time viscosity
(laminar in Chernyshenko & Baig 2005; turbulent in del Álamo & Jimenez 2006) was
accounted for in those works. Taking time-dependent Reynolds stresses into account
with the help of empirical turbulence models gives controversial results. Eigensolutions
of the extended Orr–Sommerfeld equation with different turbulence closure models
were compared with experimental results of organized disturbance evolution in fully
developed turbulent channel and boundary-layer flows. Hussain & Reynolds (1970,
1972) and Reynolds & Hussain (1972) gave damped oscillations whereas Sen and
colleagues (see for references Sen & Veeravalli 2000a) report a range of unstable
modes. An agreement with experiment was claimed in both cases. The difference
is due to the difference in turbulence models. The first direct numerical simulation
(DNS) based measurement of the complete mean response of a turbulent channel flow
to small external disturbances was described by Luchini, Quadrio & Zuccher (2006).
Space–time impulsive perturbations were applied at one channel wall, and the linear
response describing their mean effect on the flow field as a function of spatial and
temporal separations was estimated. It was shown that the turbulent response differs
from the response of a laminar flow with the turbulent mean velocity profile as the base
flow.

Analytic investigation of the behaviour of small perturbations of turbulent flow is
extremely difficult, even within a linearized approach, owing to the high complexity of
the unperturbed flow. Direct experimental quantification of the stability properties of
turbulent flows is also difficult since it implies a comparison of two realizations of fluid
motion which differ initially by a small perturbation field. Hussain & Reynolds (1970),
Hussain & Reynolds (1972) and Sen & Veeravalli (2000b) measured the evolution of
controlled disturbances. Numerical simulations offer more suitable investigation tools
for these purposes. Velocity perturbation of any spatial and temporal structure can
be imposed onto the simulated turbulent flow. After that, two simulations, with and
without perturbation, can be run in parallel providing data for the direct comparison
and the analysis of the deviation between the flows.

One of the problems connected with DNS and LES of spatially developing flows is
imposing turbulent inflow boundary conditions. In most cases, the flow downstream is
highly dependent on the condition at the inlet, making it necessary to specify realistic
time series of turbulent fluctuations that are in equilibrium with the mean flow.
Perhaps the most straightforward approach to simulating spatially developing flow
is to start far upstream with a laminar profile plus some random disturbances and
then allow a natural transition to occur. This approach has been used in simulations
focusing on the transitional process itself (Rai & Moin 1993; Nikitin 1995, 2001)
and has the advantage that no turbulent fluctuations are required at the inlet.
This method is not generally applicable to turbulent simulations, since simulating
the transition process is in itself a costly procedure. A number of strategies for
generating inflow boundary conditions have been proposed, and a comprehensive
literature survey on this topic may be found in Lund, Wu & Squires (1998) and
Druault et al (2005).
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For the class of wall-bounded flows, the method where the inflow boundary
condition is extracted from the auxiliary simulation with streamwise-periodic
conditions is one of the most suitable. Let ut (x, t) be the velocity field in a streamwise-
periodic turbulent solution of the Navier–Stokes equations with a given period lx ,

ut (x + lx, y, z, t) ≡ ut (x, y, z, t). (1.1)

Using the results of the auxiliary streamwise-periodic simulation for the main spatial
simulation means that the two simulations can be run in parallel. The inflow boundary
condition for the spatial simulation is extracted from a chosen cross-section of the
streamwise-periodic simulation, say x =0, at each time instant,

u(0, y, z, t) = ut (0, y, z, t) ∀ y, z, t. (1.2)

This method is especially suited to internal flows subjected to spatial non-uniformity
of different kinds (see, for example, Kaltenbach 1993; Wagner & Friedrich 1994; Bae
et al 2006; Yakhot, Liu & Nikitin 2006).

Using the turbulent inflow condition extracted from the auxiliary streamwise-
periodic simulation is commonly considered as ideal since it provides a flow with
correct statistics, phase information and dynamics. However, as was shown in Nikitin
(2007), the memory of the inflow is evident in the spatially evolving flow over a
considerable distance downstream. In particular, this may result in spatial periodicity
of the flow.

The point of the Nikitin (2007) paper follows from the observation that in the case
of geometry homogeneous in the x-direction, the streamwise-periodic solution

u(x, y, z, t) = ut (x, y, z, t), (1.3)

satisfies both the Navier–Stokes equations for x � 0 and the inflow boundary condition
(1.2) and, thus, presents a solution of the spatially evolving flow problem. In a series of
numerical simulations of turbulent pipe flow, it was shown that although the solution
(1.3) is convectively unstable, the memory of the inflow boundary condition is evident
over a significant distance from the inlet. In the cases considered, an almost periodic
flow was established (with less than 1 % relative deviation from the periodicity) over
a distance as large as 70 pipe radii.

This result shows that an inflow condition from an auxiliary streamwise-periodic
simulation is not as ideal as is commonly assumed, since it causes a spatial periodicity
which is not physical for turbulent flows. To enhance the departure from the
periodicity, some kind of additional perturbation should be imposed on the inflow
velocity. This perturbation should be small; otherwise, it may result in flow deviation
from the fully developed turbulent state in terms of its mean (in time) values, and
some distance downstream is required in order to recover the flow. Since the analysis
in Nikitin (2007) was performed for only one geometry and one value of the Reynolds
number, the influence of these parameters on the rate of perturbation growth and the
rate of flow departure from the periodicity remains unknown. Thus, this knowledge,
apart from its fundamental significance, is crucial for proper application of the
highly popular method of imposing inflow boundary conditions in direct numerical
simulations.

In the present paper, the procedure of a spatially evolving flow simulation adopted
in Nikitin (2007), supplemented with the imposition of an artificial perturbation
in the inlet cross-section, is used for the turbulent flow stability investigation. The
main advantages of this model are twofold. First, the use of the inflow field from
the auxiliary simulation provides the inflow data with correct turbulence statistics
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and dynamics. Secondly the ‘exact’ solution for spatially evolving flow presented by
the spatially periodic flow (1.3) can be used as a reference ‘unperturbed’ flow for
analysing its stability characteristics. The majority of simulations were performed
for the case of circular pipe flow in the Reynolds-number range 4000 � Re � 10 000
(140 � Reτ � 320). One simulation case for the plane channel flow was considered as
well, in order to confirm the main result of the investigation.

2. Formulation and numerical method
We consider a flow of viscous incompressible fluid through a long circular pipe

0 � x < ∞, y2 + z2 � R2 driven by a given unsteady inflow velocity with a positive
flow rate. The flow is governed by the Navier–Stokes and continuity equations,

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + ν∇2u, ∇ · u = 0. (2.1)

with a no-slip boundary condition on the rigid wall. Initial u|t =0 and inflow
u|x = 0 velocity fields are extracted from an auxiliary turbulent flow simulation with
streamwise-periodic conditions (1.1). The procedure of generating the streamwise-
periodic solution ut (x, t) is standard for DNS of turbulent pipe flow. At first, the
auxiliary simulation is run alone until a statistically steady state is achieved. The
instantaneous velocity field at this time, which is referred to as t = 0, is taken as the
initial condition for the main simulation,

u(x, y, z, 0) = ut (x, y, z, 0), 0 � x < ∞, y2 + z2 � R2. (2.2)

After that, the auxiliary simulation is run in parallel with the main simulation. At
each time instant t > 0, the velocity distribution in the cross-sectional plane x = 0
of the auxiliary simulation is transferred into the inlet cross-section of the main
simulation. In addition, a certain small-amplitude artificial perturbation δu(0, y, z, t)
is introduced into the inlet,

u(0, y, z, t) = ut (0, y, z, t) + δu(0, y, z, t). (2.3)

The auxiliary simulation is carried out with a constant-flow-rate condition. The
artificial inlet perturbation is chosen from a set of zero-flow-rate velocity fields, thus
ensuring a constant (in time) flow rate in the main simulation.

In the present paper, we are focused on the spatio-temporal evolution of the
perturbation field, which is defined as the difference between the actual and
unperturbed velocity fields, the latter being presented by the streamwise-periodic
solution of the auxiliary simulation

δu(x, y, z, t) = u(x, y, z, t) − ut (x, y, z, t), x � 0, t > 0. (2.4)

The intensity of perturbation is characterized by a mean-square amplitude ε(x, t),
defined as a cross-sectional average

ε2(x, t) =
1

|S|

∫ ∫
|δu(x, y, z, t)|2 dS. (2.5)

Here, S is the cross-sectional area.
The Navier–Stokes equations in a cylindrical coordinate system (x, r, θ) are solved

using a second-order finite-difference discretization scheme in space and a third-order
semi-implicit Runge–Kutta method in time. A detailed description of the numerical
method is given in Nikitin (2006).
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Several types of steady and unsteady inflow perturbation fields δu|x = 0 were tested.
No visible variations in qualitative and quantitative behaviour of the perturbation
field at x > 0 have been detected except in the immediate vicinity of the inlet. This is
predictable, taking into account the high degree of spatial and temporal irregularity
in the oncoming turbulent flow. The results shown below have been obtained with a
steady inflow perturbation in the form

(δux, δur, δuθ ) = α(0, 0, r2(1 − r2) sin θ), (2.6)

with α in the range 10−10 − 10−8. Hereinafter, ux, ur and uθ are the axial, radial
and circumferential velocity components; all quantities are presented in the non-
dimensional form with the pipe radius R and the Poiseuille flow centreline velocity
U0 (which is twice the bulk velocity Ub) as the length and velocity scales. Alternative
non-dimesionalization based on the friction velocity uτ =

√
(τw/ρ) and friction length

lτ = ν/uτ (τw is the mean wall friction) is denoted as usual by a superscript +.
The main simulation is conducted in the computational domain of a finite length,

0 � x � Lx , which is several times longer than the period of the underlying periodic
flow. Soft boundary conditions in the form

∂ux

∂x
=

∂ur

∂x
=

∂uθ

∂x
= 0, x = Lx, (2.7)

are applied at the outlet cross-section. During the course of the present simulations,
it was found that outflow boundary conditions

∂2ux

∂x2
=

∂3ur

∂x3
=

∂3uθ

∂x3
= 0, x = Lx, (2.8)

used in Nikitin (1995, 2001), occasionally produce points with negative axial velocity
in the near-wall region of the outlet cross-section, which, in turn, can lead to the
eventual destruction of the numerical solution. Boundary conditions in the form (2.7)
are free of such a deficiency, although they generate a higher perturbation in the
outlet cross-section as compared with the conditions (2.8). It is rather more important
that perturbation caused by artificial outflow conditions does not propagate upstream
as time increases, and that its intensity decreases rapidly with distance from the outlet.

In all cases, the main simulation is performed with the same time step and mesh
sizes in all three directions as in the associated auxiliary simulation. Thus, the numbers
of grid points in the radial and angle directions are the same in both simulations,
whereas the number of grid points in the axial direction in the main simulation is
Lx/lx times that in the auxiliary simulation.

3. Results
3.1. Re = 5300 case

Spatially evolving turbulent flow in a circular pipe at Reynolds number
Re =2UbR/ν =5300 with inflow condition (1.2) was investigated in Nikitin (2007).
Auxiliary simulation was conducted with the period lx = 10, the length of the
computational domain in the main simulation was Lx =80. Two initial velocity fields
u|t = 0 were considered, the spatially periodic field of the auxiliary simulation (2.2) and
the laminar flow velocity distribution (ux, ur, uθ ) = (1−r2, 0, 0). It was shown that after
a certain transitional stage at 0 � t � t0 ∼ 5×102 the flow does not depend on the initial
condition. It takes the form of a streamwise-periodic flow of the auxiliary simulation
with superimposed spatially growing perturbation. On average, the perturbation
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Run A B C D

lx 10 20 10 10
Lx 80 80 40 40

Grid (auxiliary simulation) 256 × 64 × 128 512 × 64 × 128 256 × 64 × 128 512 × 64 × 128
Grid (main simulation) 2048 × 64 × 128 2048 × 64 × 128 1024 × 64 × 128 2048 × 64 × 128

α 10−10 10−8 10−8 10−10

Table 1. Runs with Re = 5300.

amplitude increases exponentially with distance from the inlet and this trend does
not change with time. Such a behaviour corresponds to convective instability of the
underlying streamwise-periodic turbulent flow. The mean perturbation amplitude

ε(x) =

[
1

T

∫ t0+T

t0

ε2(x, t) dt

]1/2

, (3.1)

was obtained by time averaging over the interval T =300. Except in the immediate
vicinity of the inlet, ε(x) behaves exponentially, ε(x) ∼ exp(σx). The growth rate was
estimated as σ ≈ 0.36 (More careful examination of the Nikitin (2007) data reveals
that a better approximation for the growth rate is σ = 0.38.)

In the simulations of Nikitin (2007), no artificial perturbation was introduced into
the inlet. The only source of perturbations at x > 0 were the round-off errors of
calculations. Thus, the effect of artificial inflow perturbations was not investigated.
Also, the dependence of the perturbation growth rate on the period of underlying
periodic flow and on the length of the computational domain was not determined in
that work. Since all these factors may affect the flow evolution, additional simulations
at Re =5300 were performed in the present study. The corresponding simulation
parameters including the amplitude α of the inlet perturbation (2.6) are given in
table 1. The computational mesh in runs A, B and C was the same as in Nikitin
(2007) with grid spacing in the axial, radial and angle directions of 7.0, 0.7–4.6 and
0–8.8 wall units, respectively. As was shown in Nikitin (2006), this grid spacing is
adequate for the accurate reproduction of the first- and second-order statistics of the
flow at the considered Reynolds number.

Space–time evolution of the perturbation amplitude ε(x, t) in run A is shown in
figure 1(a). In this run, grid and computational-domain parameters were exactly
the same as in Nikitin (2007), but artificial perturbation, (2.6), with the amplitude
α = 10−10 was introduced into the inlet cross-section of the main simulation. As in
Nikitin (2007), where no artificial perturbation was introduced into the flow, in the
initial stage of flow development, the most visible perturbation is in the downstream
section of the pipe caused by the artificial outlet conditions. The outflow perturbation
is ≈10−2 in the exit cross-section and decays rapidly in the upstream direction.
It is important that it does not spread further upstream with time. The inflow
perturbations propagate gradually downstream. The most growing perturbation has
an exponential trend ε ∼ exp(0.38x) and propagates with a velocity of about 0.4.
Faster (but less growing) perturbations propagate downstream with a velocity up to
≈ 0.7, the maximum velocity in the flow. (Infinite-propagation-velocity perturbations
caused by pressure fluctuations and by viscosity, decrease very rapidly in space and
therefore cannot be detected on the background of round-off errors.) At the later
stages of flow evolution, t � 200, the exponential growth of perturbations spreads
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Figure 1. (a) Space–time evolution of perturbation amplitude, run A; (b) growth of mean
perturbation amplitude at Re = 5300. - - -, ∼exp(0.38x).

downstream until finally saturating at the level of �10−1, the amplitude of turbulent
fluctuations in the flow.

The mean perturbation amplitude ε(x) defined in (3.1) was obtained by time-
averaging over the interval T = 500 after the most growing perturbation reaches the
exit cross-section at t = t0 = 200. The graph of ε(x) is shown in figure 1(b) together with
the corresponding graph from Nikitin (2007). The growth rates of small perturbations
obtained in the two simulations agree very well, which demonstrates the independence
of this quantity from the origin and the character of the flow perturbation.

The growth rate of small perturbations in a streamwise-periodic turbulent flow
must be a varying function of the period length, σ = σ (lx). It may be expected,
however, that the dependence of σ on lx weakens at large lx , approaching the value
which characterizes the instability of a general turbulent flow at a given Reynolds
number. To clarify this issue, simulation run B with longer period, lx = 20, was
performed. The number of grid points in the x-direction was doubled accordingly in
the auxiliary simulation to keep the mesh spacings the same as in run A. Furthermore,
the amplitude of the inlet perturbation was taken to be two orders higher than that in
run A in the hope of obtaining nonlinear saturation of the perturbations at a smaller
distance from the inlet. The resulting graph ε(x) for this run is presented in the
figure 1(b). The same value, σ ≈ 0.38, was obtained for the mean perturbation growth
rate. The close values of the perturbation growth rate obtained for two different
periods of underlying periodic flow is evidence that σ ≈ 0.38 represents the instability
rate of a general turbulent pipe flow at Re = 5300 rather than the instability rate of
the periodic flow with some particular period.

The simulations presented so far were conducted with the same length of
computational domain in the main simulation, Lx = 80. Taking into account the
character of the evolution of the perturbation caused by the artificial outflow
conditions (2.7), it is unlikely that evolution of the inflow perturbations can be
seriously affected by the outflow. To be sure, additional runs C and D were performed
with a different length of computational domain, Lx = 40. It was observed that the
rate at which outflow perturbation decreases upstream depends on the axial grid
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Figure 2. Flow statistics, run B. Lines, incoming flow; symbols, outgoing flow.
(a) Mean velocity; (b) second-order statistics.

spacing. Therefore, one of the runs (run D) was performed with a finer grid in the
streamwise direction. The results of these simulations are presented in figure 1(b). In
both cases, the growth rate of small perturbations is close to σ ≈ 0.38, proving the
insignificance of the outflow effect.

The growth of perturbations means that the actual flow departs from the oncoming
streamwise-periodic flow of the auxiliary simulation in terms of instantaneous velocity
fields. It is important, however, that the two flows remain basically the same turbulent
flow in terms of mean quantities. Mean velocity profile, r.m.s. values of the velocity
fluctuations and Reynolds shear stress 〈uxur〉 distribution in the end section of the
pipe (run B) are shown in figure 2 and compared with the corresponding correlations
in the oncoming flow. The presented quantities are given as functions of distance
to the wall d = 1 − r . Mean quantities are obtained by averaging in time and in
the azimuthal direction. The oncoming flow characteristics are averaged in the axial
direction over the flow period, whereas the exit flow characteristics are averaged in
the axial direction over the interval 70 � x � 80. In this region, the difference between
the instantaneous velocity fields in the actual and periodic flow have saturated on the
level of turbulent fluctuations. However, as can be seen from figure 2, the two flows
have almost exactly coincident mean characteristics.

The profiles of r.m.s. intensity of perturbation δurms(x, r) = (δu2
x,rms + δu2

r,rms +

δu2
θ,rms)

1/2 obtained in run B are shown in figure 3(a) for several x-stations as functions
of the distance to the wall. Root mean square values are calculated by averaging in
time and in the circumferential direction. At each station, the perturbation intensity is
normalized, so that max δurms = 1. The growing perturbation with a self-similar radial
distribution of the r.m.s. intensity is formed soon after leaving the inlet cross-section
and is held along the area of linear evolution. The shape of the r.m.s. intensity
profile in this area is characterized by a distinct maximum at d+ ≈ 13 and a sharp
reduction of perturbations at larger distances from the wall. Further downstream,
when nonlinear effects became visible in perturbation evolution, the perturbations
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Figure 3. (a) Root mean square intensities of perturbations in several x-stations (run B);
(b) three components of perturbation intensity at x =75 compared with the three components

of turbulent fluctuations multiplied by
√

2.

occupy a wider region from the wall and the fall in perturbation intensity with d is
smoother.

Perturbation δu is defined as the velocity difference between the actual u and the
unperturbed ut flows. Taking into account that the mean velocity and the r.m.s. values
in both flows are the same at each x-station, the following relation can be derived,

δu2
rms = 2u2

rms − 2〈u′ · u′
t〉, (3.2)

where u′ = u − 〈u〉 and u′
t = ut − 〈ut〉 are turbulent fluctuations. Equation (3.2) shows

that if the two flows are uncorrelated, then the r.m.s. amplitude of perturbation is
√

2
times the r.m.s. amplitude of turbulent fluctuations in each flow. Three components
of perturbation intensity corresponding to the three velocity components in the last
station, x = 75, are shown in figure 3(b). For comparison, r.m.s. intensities of velocity
fluctuations multiplied by

√
2 are given in figure 3(b) as well. Close coincidence of the

two profiles for each velocity component signifies that the perturbation growth in the
flow eventually makes the flow uncorrelated with the underlying unperturbed flow.

3.2. Other Reynolds numbers

Similar simulations were conducted at two other Reynolds numbers, Re =4000 (run E)
and Re = 10 000 (run F). The grid and flow parameters in these cases together with
those in run A are given in table 2. In all cases, the mesh spacing was adequate for
accurate representation of the main statistical characteristics.

It was expected that the rate of perturbation growth would be an increasing function
of Reynolds number. The results of the simulations support this supposition. The
resulting graphs ε(x) for different Reynolds numbers are presented in figure 4(a). In
all cases, there is a distinct region of exponential growth in ε(x) with the growth rate
increasing from σ ≈ 0.29 at Re = 4000 to σ ≈ 0.71 at Re = 10 000.

In figure 4(b), the variation of ε with distance from the inlet is shown as a
function of x+ ≡ xReτ , where Reτ = uτR/ν. In this representation, the graphs ε(x+)
remarkably, have the same growth rate σ+ = σ/Reτ in the range 0.0021−0.0022 in all
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Run A E F Channel flow

Re 5300 4000 10 000 5600
lx 10 10 10 10
Lx 80 80 40 80
Reτ 140 180 320 178

Grid (auxiliary simulation) 256 × 64 × 128 256 × 64 × 128 256 × 128 × 256 256 × 128 × 64
Grid (main simulation) 2048 × 64 × 128 2048 × 64 × 128 1024 × 128 × 256 2048 × 128 × 64

h+
x 7.0 5.5 12.5 7.0

h+
r 0.7–4.6 0.5–3.6 0.6–4.1 h+

y = 0.9−4.4
h+

θ 0–8.8 0–6.9 0–7.9 h+
z = 8.3

α 10−10 10−8 2 × 10−10 10−8

σ 0.38 0.29 0.71 0.35
σ+ 0.0021 0.0021 0.0022 0.0020

Table 2. Grid and flow parameters.
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Figure 4. Growth of mean perturbation amplitude as function of (a) x and
(b) x+. - - -, ∼exp(0.0021x+).

cases. The observation that the growth rate of small perturbations is constant when
normalized by a friction length, suggests that instability of turbulent flow is a purely
near-wall phenomenon with low dependence on the outer flow. In the linear stage of
development, the profiles of perturbation intensities at all Reynolds numbers have a
similar shape to those shown in figure 3(a). The maximal perturbation is observed at
distance d+ ≈ 13 from the wall.

3.3. Channel flow

The near-wall character of instability in turbulent pipe flow suggests that instability
with similar properties may be observed in other near-wall flows. To check the validity
of this hypothesis, evolution of perturbations in plane channel flow was investigated
following the procedure described in the previous sections for pipe flow. Simulation
was performed at Reynolds number 2hUb/ν = 5600 with a periodic condition in
the spanwise direction z with a period lz = π. The grid and flow parameters in the
channel-flow simulation are given in table 2 (channel half-width h is a length scale).
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Figure 5. Propagation of the front edge of the most growing perturbation. Run A.

The inflow perturbation was taken in the form analogous to that in the pipe flow
(2.6):

(δux, δuy, δuz) = α(0, 0, y2(1 − y2) sin(2πz/lz)). (3.3)

Spatial evolution of the mean perturbation amplitude is shown in figure 4. Per-
turbation growth rate σ+ ≈ 0.002 was obtained in channel flow. This is in reasonable
agreement with the values σ+ ≈ 0.0021 − 0.0022 observed in pipe flow.

3.4. Temporal evolution of perturbations

As demonstrated in figure 1(a), the area occupied by the growing perturbation expands
at the initial stage of flow evolution. Spatial growth of perturbations on this stage can
be interpreted as a temporal growth with a simultaneous propagation downstream
with a certain velocity. The propagation velocity of the most growing perturbation
can be estimated my monitoring the position xf of the front edge of the exponential
part in the ε(x, t) distribution. Although the front edge can be defined only within a
certain tolerance, the graph x+

f (t+) (shown in figure 5, run A) demonstrates a constant

propagation velocity C+
f = dx+

f /dt+ ≈ 10.
Another way to estimate propagation velocity follows from the supposition that

the maximum amplification of perturbation takes place in a critical layer, where
propagation velocity coincides with the velocity of a base flow. Since the maximum
perturbation amplitude is at a distance d+ ≈ 13 from the wall where the mean
velocity U+ in the base turbulent flow is equal to 10, it is reasonable to expect that
the propagation velocity of the most growing perturbation is also close to C+

f = 10.
The existence of near-wall structures in turbulent flows propagating with a velocity

of about 10uτ is well known (e.g. see Morrison, Bullock & Kronauer 1971; Kim
& Hussain 1993). There is no doubt that near-wall turbulent structures are closely
connected to the growing perturbations investigated in the present work.

Spatial growth of perturbations can be interpreted as temporal growth in a moving
frame of reference translating downstream with the propagation velocity Cf . Given
the rate of spatial growth σ and the velocity of spatial propagation Cf , the rate of
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temporal growth λ can be found as λ= Cf σ . Thus, for the values obtained in the
present work, we can estimate λ+ ≈ 0.021.

The obtained rate of temporal growth agrees well with the results of Keefe
et al. (1992). They estimated the dimension of the turbulent attractor underlying
plane channel flow at very low Reynolds number Reτ =80 and calculated Lyapunov
spectra. Lyapunov exponents were calculated using two time steps �tuτ/h= 0.003
and �tuτ/h= 0.0015. The highest Lyapunov exponent, which characterizes the growth
rate of the most growing small perturbation, was estimated as λ1h/uτ ≈ 1.4 for the
larger time step and λ1h/uτ ≈ 1.6 for the smaller one. When normalized by viscous
scales, these values give λ+

1 ≈ 0.0175 and λ+
1 ≈ 0.02, respectively.

4. Summary
Spatial growth of small perturbations introduced into the fully developed turbulent

flow in a circular pipe and a plane channel was investigated by numerical simulations.
Turbulent inflow velocity field was obtained in an auxiliary simulation with periodic
conditions in the streamwise direction. The evolution of perturbation is analysed
by comparing the flows with and without perturbations. The unperturbed flow is
presented by the streamwise-periodic flow of the auxiliary simulation.

It was shown that the growth rate of the fastest-growing perturbation does not
depend on the source of perturbation and the period of the underlying periodic
flow. It was also shown that artificial outflow conditions, the length of computational
domain and the grid spacing in the streamwise direction have a negligible effect on
the perturbation growth rate.

The main result of the paper consists in the observation that the growth rate of the
fastest-growing perturbation is a universal constant when normalized by wall units,
σ+ ≈ 0.0021. This conclusion was derived from the analysis of a circular pipe flow in
the Reynolds-number range 140 � Reτ � 320 and plane channel flow at Reτ = 178.

The propagation velocity and the rate of temporal growth of the most growing
perturbation was estimated as C+

f ≈ 10 and λ+ ≈ 0.021. The latter is in very good
agreement with the higher Liapunov exponent of the turbulent attractor obtained in
Keefe et al. (1992).
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